Learning Objectness Transfer Networks for Visual Tracking
نویسندگان
چکیده
منابع مشابه
Dynamic Objectness for Adaptive Tracking
A fundamental problem of object tracking is to adapt to unseen views of the object while not getting distracted by other objects. We introduce Dynamic Objectness in a discriminative tracking framework to sporadically re-discover the tracked object based on motion. In doing so, drifting is effectively limited since tracking becomes more aware of objects as independently moving entities in the sc...
متن کاملMulti-Stream Deep Similarity Learning Networks for Visual Tracking
Visual tracking has achieved remarkable success in recent decades, but it remains a challenging problem due to appearance variations over time and complex cluttered background. In this paper, we adopt a tracking-by-verification scheme to overcome these challenges by determining the patch in the subsequent frame that is most similar to the target template and distinctive to the background contex...
متن کاملTransfer Learning Based Visual Tracking with Gaussian Processes Regression
Modeling the target appearance is critical in many modern visual tracking algorithms. Many tracking-by-detection algorithms formulate the probability of target appearance as exponentially related to the confidence of a classifier output. By contrast, in this paper we directly analyze this probability using Gaussian Processes Regression (GPR), and introduce a latent variable to assist the tracki...
متن کاملIncremental Learning for Visual Tracking
Most existing tracking algorithms construct a representation of a target object prior to the tracking task starts, and utilize invariant features to handle appearance variation of the target caused by lighting, pose, and view angle change. In this paper, we present an efficient and effective online algorithm that incrementally learns and adapts a low dimensional eigenspace representation to ref...
متن کاملLearning Spatial-Aware Regressions for Visual Tracking
In this paper, we analyze the spatial information of deep features, and propose two complementary regressions for robust visual tracking. First, we propose a kernelized ridge regression model wherein the kernel value is defined as the weighted sum of similarity scores of all pairs of patches between two samples. We show that this model can be formulated as a neural network and thus can be effic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2946921